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Cantor Type Invariant Distributions in the
Theory of Optimal Growth under Uncertainty*
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bDepartment of Public Policy and Public Choice, Via Cavour 84, 15100 Alessandria, Italy

(Received 21 November 2003; In final form 7 January 2004)

We study a one-sector stochastic optimal growth model, where the utility function is iso-elastic and the production
function is of the Cobb–Douglas form. Production is affected by a multiplicative shock taking one of two values.
We provide sufficient conditions on the parameters of the model under which the invariant distribution of the
stochastic process of optimal output levels is of the Cantor type.

Keywords: Stochastic optimal growth, Iterated function system, Invariant measure, No overlap property, Cantor
function, Lipschitz policy
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INTRODUCTION

In the theory of optimal economic growth under uncertainty, relatively little is known about

the nature of the stochastic steady-state. Mirman and Zilcha [9] considered an example

with logarithmic utility function and Cobb–Douglas production function (where a

multiplicative random shock to production takes one of two values) to show that the invariant

distribution of the stochastic process of outputs would be an absolutely continuous function

for some chosen parameter values. Montrucchio and Privileggi [12] considered the same

example with different parameter values to show that the invariant distribution of the

stochastic process of outputs can be a Cantor function. Mitra et al. [10] expanded on this

example to establish precise bounds on the parameters of the model under which such

Cantor-type and more general singular invariant distributions would arise, as well as bounds

on the parameters of the model under which the invariant distribution would be absolutely

continuous.

In the above example, it is well-known that the optimal policy function is linear, and it can

be explicitly calculated. This allows one to characterize the nature of the stochastic steady
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state, at least for a wide range of parameter values. However, once one goes beyond this

specific example, and allows for instance for the class of iso-elastic utility functions which

are not of the logarithmic type, the optimal policy function is necessarily non-linear, and its

solution in closed form is not known. Thus, the techniques used in the above example to

characterize the nature of the invariant distribution are no longer available, and a more

general approach is needed.

In this paper, we consider the case of an iso-elastic utility function, and a Cobb–Douglas

production function, and we establish suitable sufficient conditions on the parameters of the

model under which the invariant distribution is of the Cantor type. While this special

framework is maintained throughout, we believe our approach is applicable in more general

settings.

In the first part of the paper, we establish a sufficient condition for the crucial “no-overlap

property” of the iterated function system (IFS), generated by the optimal policy function, on

the stable invariant set of the stochastic process of optimal output. This property leads to an

attractor of the IFS resembling a Cantor set.

We develop further properties of the IFS under suitable restrictions on the parameters.

Specifically, we provide conditions under which the maps of the IFS are Lipschitz, with

Lipschitz constants which can be directly computed, given the parameters of the model.

Using the general theory of IFS, we are then able to identify parameter configurations under

which the attractor of the IFS has Lebesgue measure zero, so that the invariant distribution is

necessarily singular.

We note, in connection with these results, that some of the mathematical literature on IFS

(for non-linear maps) has been developed under the condition that the maps of the IFS are

twice continuously differentiable on the relevant state space (see, for example, Refs. [7,8]).

In our exercise, the IFS is not a primitive, but rather derived from a stochastic dynamic

programming problem. For these problems, such smoothness conditions on the resulting

maps are in general not possible to establish.{ We have, therefore, not used these results, but

have instead based our analysis only on those properties of the value and policy functions,

which can be established in our framework.

PRELIMINARIES

We consider a special case of the standard model of optimal growth under uncertainty as

presented in Refs. [5,9]. Specifically, the production function is one in which the shocks are

multiplicative, so there is a function, h : Rþ ! Rþ; such that f ðx; rÞ ¼ rhðxÞ for ðx; rÞ [

Rþ £ S: The set S of values of the random variable, r, is {1, q}, where q [ ð0; 1Þ: We

interpret the value 1 of r to be the “normal” state, with q representing a downward production

shock, occurring with probability p [ ð0; 1Þ: The function, h, is specified to be of the Cobb–

Douglas type; that is, there is a [ ð0; 1Þ; such that hðxÞ ¼ x12a=ð1 2 aÞ for x $ 0:

{See Refs. [1,13] for results on the C 1 differentiability of the optimal policy function, and the difficulties which
arise in establishing C 2 differentiability of the optimal policy function in non-stochastic dynamic programming
models. For stochastic dynamic programming models, see Ref. [14] for results on the C 1 differentiability of the
optimal policy function. If the random shock has a distribution which is smooth (a condition which is clearly violated
in our set-up), then it is possible to show that the optimal policy function is twice continuously differentiable, by
using the results of Ref. [4].
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The utility function, u, is of the iso-elastic type; that is, there is b [ ð0; 1Þ; such that

uðcÞ ¼ c12b=ð1 2 bÞ for c $ 0: Thus, the “primitives” of our model are the parameters q, p,

a, b and d, the discount factor, each belonging to (0,1).

One can apply the standard theory of stochastic dynamic programming to obtain an

(optimal) value function, V : Rþ ! Rþ and an (optimal) policy function, g : Rþ ! Rþ;

which we will interpret as the consumption function. That is, given any output level,

y $ 0; the optimal consumption out of this output is given by g( y). The optimal input

choice (for production in the next period) is then ½ y 2 gð yÞ�: We denote h½ y 2 gð yÞ� by

G( y); it is the output obtained in the next period, when r takes the value 1. Then, qG( y) is

the output obtained in the next period, when r takes the value q. We will denote the

function qG by H.

Following Refs. [5,9], one can establish several useful properties of the value and policy

functions. We summarize these results (without proofs) in the following Proposition.

Proposition 1 The value function, V, and the policy function, g, satisfy the following

properties:

(i) V is concave on Rþ, and continuous on Rþþ;

(ii) g is continuous on Rþ and 0 , gð yÞ , y for y . 0;

(iii) g(y) and ½ y 2 gð yÞ� are increasing in y on Rþ;

(iv) V is continuously differentiable on Rþþ , and V 0ð yÞ ¼ u 0½gð yÞ� for y . 0;

(v) for y . 0; we have

u 0½gð yÞ� ¼ d{pV 0½ qGð yÞ�qh 0½ y 2 gð yÞ� þ ð1 2 pÞV 0½Gð yÞ�h 0½ y 2 gð yÞ�}; ð1Þ

(vi) for y . 0; we have

u 0½gð yÞ� ¼ d{pu 0½gðqGð yÞÞ�qh 0½ y 2 gð yÞ� þ ð1 2 pÞu 0½gðGð yÞÞ�h 0½ y 2 gð yÞ�}: ð2Þ

The optimal policy function leads to the stochastic process:

ytþ1 ¼ rtþ1Gð ytÞ for t $ 0: ð3Þ

Alternately, one might say that the optimal policy function leads to an IFS {H;G; p; 1 2 p}:

It is known (from Ref. [5]), that there is a unique invariant distribution, m, of the Markov

process described by Eq. (3), and the distribution of optimal output at date t, call it mt,

converges weakly to m.§ We are principally interested in the nature of this distribution m.

The distribution function corresponding to m is denoted by F.

It can be checked that the functions G and H have positive fixed points, and all the fixed

points are less than ½1=ð1 2 aÞ�ð1=aÞ: Denote by a the largest fixed point of H, and by b the

smallest fixed point of G. Following Ref. [5], one can establish that a , b: The interval [a, b ]

is an invariant stable set of the stochastic process (3). In particular, the support of F is

contained in [a, b ]. Consequently, in studying the nature of F, it is enough to concentrate on

the stochastic process (3), with initial output, y [ ½a; b�: Equivalently, one need only study

the IFS {H;G; p; 1 2 p} on the state space X ¼ ½a; b�:

§For an alternate and simpler approach to this result, see Ref. [2].
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THE NO OVERLAP PROPERTY

Let us examine some elementary features of the IFS {H;G; p; 1 2 p} on the state space

X ¼ ½a; b�: First, we look at the function H. We have HðaÞ ¼ a; and, for y [ ða; b�; we have

Hð yÞ , y; so the graph of the map lies below the 458 line (except at a). Further H( y)

increases with y, reaching HðbÞ , GðbÞ ¼ b at y ¼ b: Next, we look at the function G.

Clearly, GðaÞ ¼ ða=qÞ . a; and for all y [ ½a; bÞ; we must have Gð yÞ . y; so the graph of

the map lies above the 458 line (except at b). Further, G( y) increases with y, reaching

GðbÞ ¼ b at y ¼ b: The two maps do not overlap if:

HðbÞ , GðaÞ ð4Þ

so that the maximum of the H function is less than the minimum of the G function on the state

space X ¼ ½a; b�:

We want to find conditions on the primitives of the model (q, p, a, b and d) which ensure

the no-overlap property (4).

Proposition 2 Suppose the following condition is satisfied:

q2a21 , ½dpð1 2 aÞ�ð12aÞ: ð5Þ

Then the IFS {H;G; p; 1 2 p} on the state space X ¼ ½a; b� has the no overlap property (4).

Proof Since HðbÞ ; qGðbÞ ¼ qb and GðaÞ ¼ ða=qÞ; the no-overlap condition (4) is

equivalent to

q2 ,
a

b
: ð6Þ

We thus need to find a lower bound for a and an upper bound for b such that Eq. (6)

holds true.

Let us write the stochastic Ramsey–Euler equation (2) [Proposition 1, (vi)] at y ¼ a and

at y ¼ b:

1

½gðaÞ�b
¼ d

pq

½gðaÞ�b ½a 2 gðaÞ�a
þ

1 2 p

½gða=qÞ�b ½a 2 gðaÞ�a

� �
ð7Þ

1

½gðbÞ�b
¼ d

pq

½gðqbÞ�b ½b 2 gðbÞ�a
þ

1 2 p

½gðbÞ�b ½b 2 gðbÞ�a

� �
ð8Þ

Equation (7) can be re-written as:

1

d
¼

pq

½a 2 gðaÞ�a
þ

ð1 2 pÞ½gðaÞ�b

½gða=qÞ�b ½a 2 gðaÞ�a
: ð9Þ

Using the fact that GðaÞ ¼ ða=qÞ; and so:

½a 2 gðaÞ�a ¼ ½ð1 2 aÞa=q�
a

12að Þ ð10Þ

the Eq. (9) can be further simplified to read:

1

d
½ð1 2 aÞa=q�

a
12að Þ ¼ qp þ

ð1 2 pÞ½gðaÞ�b

½gða=qÞ�b
: ð11Þ
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The right-hand side expression in Eq. (11) is at least as large as qp. This yields the

inequality:

½ð1 2 aÞa=q�
a

12að Þ $ dqp: ð12Þ

Manipulating the expression in Eq. (12) leads to the following lower bound on a:

a $
qðdqpÞ

12a
að Þ

ð1 2 aÞ
: ð13Þ

Using the upper bound on b:

b # ½1=ð1 2 aÞ�ð1=aÞ

and Eq. (13), we obtain:

q ð1=aÞ½dpð1 2 aÞ�
12a
að Þ #

a

b
: ð14Þ

Then, in view of Eq. (6), our sufficient condition for no-overlap is:

q2 , q ð1=aÞ½dpð1 2 aÞ� 1 2 a=a
� �

;

which can be rewritten as in Eq. (5), thus completing the proof. A

Remark 1

(i) The sufficient condition (5) is possibly not the sharpest one can obtain. As is clear from

the proof, in certain steps we have used somewhat crude bounds. It would be interesting

to attempt a complete characterization of the no-overlap property in terms of the

primitives of the model.

(ii) A necessary condition for Eq. (5) to hold is that ð2a2 1Þ . 0; that is:

a . ð1=2Þ

which is the condition for no-overlap in the case when the utility function is logarithmic

(see Ref. [10]). Since our sufficient condition does not involve the utility coefficient b

(and therefore applies to all iso-elastic utility functions) it is to be expected that our

condition should turn out to be a stronger restriction than in the logarithmic utility case.

(iii) The sufficient condition (5) is non-vacuous. To see this, note that as a! 1; the right

hand side of Eq. (5) converges to 1, while the left hand side of Eq. (5) converges to

q [ ð0; 1Þ: Thus, for a sufficiently close to 1, condition (5) always holds. That is the

no-overlap case arises when the exponent in the Cobb–Douglas production function is

“low”; this agrees with the finding in Ref. [10] for the logarithmic utility case.

(iv) For a specific numerical case, choose:

q ¼ 0:83; p ¼ 0:9; d ¼ 0:9; a ¼ 0:95:

Then the right hand side of Eq. (5) can be calculated to be 0.852, while the left hand

side of Eq. (5) is 0.846, and condition (5) holds.
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THE LIPSCHITZ PROPERTY

We will now show that the IFS {H;G; p; 1 2 p} on X ¼ ½a; b� has the Lipschitz property; that

is, the maps H and G are Lipschitz continuous on X. It is sufficient for this purpose to show

that G is Lipschitz continuous.

The Lipschitz continuity of policy functions in non-stochastic models has been studied

by Ref. [11]. Given the structure of our model, we are able to take a fairly direct approach.

The Lipschitz constant that we obtain is possibly not the sharpest possible, because (unlike

Ref. [11]) we do not incorporate in it an additional term expressing the degree of concavity of

the value function. On the other hand, we can therefore bypass the theory linking the

concavity of the value function to the concavity of the utility and production functions. This

makes our approach simpler, and the Lipschitz constant is seen to directly depend on the

exponents of the utility and production functions.

Our purpose in exhibiting the Lipschitz property of the IFS is to obtain a sufficient condition

in terms of the primitives of the model (q, p, a, b and d). It is, therefore, important to obtain a

Lipschitz constant which depends only on these parameters and is independent of the points of

evaluations of the derivatives of the utility, production and value functions.

Keeping this objective in mind, we first obtain a positive lower bound, expressed in terms of

the parameters q, p, a, b and d, on the optimal propensity to consume, ½gð yÞ=y�: This result is

clearly also of independent interest as a property of the optimal policy function.

Proposition 3 Suppose the IFS {H;G; p; 1 2 p} on the state space X ¼ ½a; b� has the no

overlap property. Further, assume that:

q2 . d½ qp þ ð1 2 pÞ�ð1 2 aÞ: ð15Þ

Then, we have the following lower bound on the optimal propensity to consume:

gð yÞ=y . q2 2 d½ qp þ ð1 2 pÞ�ð1 2 aÞ for all y [ X: ð16Þ

Proof Using Eq. (8), and noting that gðbÞ . gðqbÞ; we have:

1

d
.

pq

½b 2 gðbÞ�a
þ

1 2 p

½b 2 gðbÞ�a
: ð17Þ

On rearranging terms in Eq. (17), and denoting ½ qp þ ð1 2 pÞ� by E(r) (the expected value

of r),

½b 2 gðbÞ�a . dEðrÞ: ð18Þ

By definition of b, we have:

b ¼ GðbÞ ¼ h½b 2 gðbÞ� ¼
½b 2 gðbÞ�12a

1 2 a
:

This yields:

½b 2 gðbÞ�a ¼ ½bð1 2 aÞ�
a

12að Þ: ð19Þ

Combining Eqs. (18) and (19), we get:

b .
½dEðrÞ�

12a
að Þ

1 2 a
: ð20Þ
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Using Eq. (9), and noting that gðaÞ , gða=qÞ; we have:

1

d
,

pq

½a 2 gðaÞ�a
þ

ð1 2 pÞ

½a 2 gðaÞ�a
: ð21Þ

On rearranging terms in Eq. (21), we get:

½a 2 gðaÞ�a , dE½r�:

This yields the inequality:

gðaÞ . a 2 ½dEðrÞ�1=a: ð22Þ

Thus, for all y [ X; using the fact that g is increasing, we obtain from Eq. (22):

gð yÞ

y
$

gðaÞ

b
.

a

b
2

½dEðrÞ�1=a

b
: ð23Þ

Using Eq. (20), the second term on the right hand side expression of Eq. (23) is less than

ð1 2 aÞdEðrÞ; while the first term on the right hand side expression of Eq. (23) is greater

than q 2, since the no-overlap property holds. Thus, for all y [ X;

gð yÞ=y . q2 2 ð1 2 aÞ d EðrÞ

which establishes the result. A

Remark 2

(i) In particular, if the sufficient condition (5) on the parameters hold, and Eq. (15) holds,

then Eq. (16) holds, by Proposition 2. In fact, as is clear from the proof, if Eq. (5) holds,

then this itself ensures that Eq. (16) holds. But, this is of interest, of course, only when

Eq. (15) holds.

(ii) If we let a! 1; given the other parameters of the model (q, p, a, b and d) fixed, then the

sufficient condition (15) is automatically satisfied. In particular, for the numerical

example discussed in Remark 1, with q ¼ 0:83; p ¼ 0:9; d ¼ 0:9; a ¼ 0:95; we have

d½ qp þ ð1 2 pÞ�ð1 2 aÞ ¼ 0:038115; and q2 ¼ 0:6889; so Eqs. (5) and (15) are both

satisfied. That is, we have the no-overlap property holding, and the propensity to

consume has a lower bound of {q2 2 d½ qp þ ð1 2 pÞ�ð1 2 aÞ} ¼ 0:650785:

Proposition 4 Suppose the IFS {H;G; p; 1 2 p} on the state space X ¼ ½a; b� has the no

overlap property, and Eq. (15) holds. Denote {q2 2 d½ qp þ ð1 2 pÞ�ð1 2 aÞ} by m, and

define:

L ¼
bð1 2 mÞ

dqp½bð1 2 mÞ þ am�
: ð24Þ

Then, for all y; z [ X; we have:

jGð yÞ2 GðzÞj # Ljy 2 zj: ð25Þ

Proof We will first prove that G is locally Lipschitz on X, with Lipschitz constant L. That is,

we will show that there is some 1 . 0; such that, whenever y; z [ X; and 0 , jy 2 zj # 1;

Eq. (25) holds with L defined by Eq. (24).
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Denote by m 0 the minimum value of ½gð yÞ=y� on X; this is well defined by continuity

of ½gð yÞ=y� on the (non-empty) compact set X. By Proposition 3, we have m 0 . m:

Now, define

l ¼ 1 2
1

a 2 gðaÞ

� �1þa

ð26Þ

and choose 1 . 0 sufficiently small so that

lm 0 . m: ð27Þ

It is sufficient to show that, with this choice of 1, whenever y; z [ X and 0 , z 2 y # 1;

the inequality (25) holds.

So, let us pick arbitrary y; z [ X; with 0 , z 2 y # 1: Let us write the Eq. (1) [Proposition

1 (v)] at y and at z:

u 0½gð yÞ� ¼ d{pqV 0½ qGð yÞ� þ ð1 2 pÞV 0½Gð yÞ�}h 0½ y 2 gð yÞ� ð28Þ

u 0½gðzÞ� ¼ d{pqV 0½ qGðzÞ� þ ð1 2 pÞV 0½GðzÞ�}h 0½z 2 gðzÞ�: ð29Þ

Thus, subtracting Eqs. (29) from (28), we obtain:

u 0½ gð yÞ�2 u 0½ gðzÞ� ¼ d{pqV 0½ qGð yÞ� þ ð1 2 pÞV 0½Gð yÞ�}h 0½ y 2 gð yÞ�

2 d {½pqV 0½ qGðzÞ� þ ð1 2 pÞV 0½GðzÞ�}h 0½z 2 gðzÞ�: ð30Þ

Since GðzÞ . Gð yÞ; so that V 0½ qGðzÞ� # V 0½ qGð yÞ� and V 0½GðzÞ� # V 0½Gð yÞ�; we obtain:

u 0½gð yÞ�2 u 0½gðzÞ� $ d{pqV 0½ qGð yÞ� þ ð1 2 pÞV 0½Gð yÞ�}

£ {h 0½ y 2 gð yÞ�2 h 0½z 2 gðzÞ�}: ð31Þ

We use the Mean Value theorem to obtain j satisfying gð yÞ # j # gðzÞ; such that:

u 0½gð yÞ�2 u 0½gðzÞ� ¼ u00ðj Þ½gð yÞ2 gðzÞ�: ð32Þ

Similarly, we can find z satisfying ½ y 2 gð yÞ� # z # ½z 2 gðzÞ�; such that:

h 0½ y 2 gð yÞ�2 h 0½z 2 gðzÞ� ¼ h00ðz Þ{½ y 2 gð yÞ�2 ½z 2 gðzÞ�}: ð33Þ

Using Eqs. (32) and (33) in Eq. (31) and changing sign, we obtain:

2u00ðjÞ½gðzÞ2gðyÞ�$2d{pqV 0½qGðyÞ�þð12pÞV 0½GðyÞ�}h00ðzÞ{ðz2yÞ2½gðzÞ2gðyÞ�}:

Transposing terms, dividing through by u 0½gð yÞ�; using Eq. (28), and rearranging terms,

the last inequality becomes:

gðzÞ2 gð yÞ

z 2 y
$ 2

h00ðz Þ

h 0½ y 2 gð yÞ�
2

u00ðj Þ

u 0½gð yÞ�
2

h00ðz Þ

h 0½ y 2 gð yÞ�

� �21

: ð34Þ

It remains to convert the right-hand side into terms involving the parameters of our model.

Note that since j satisfies gð yÞ # j; we have:

2u00ðj Þ ¼
b

j1þb
#

b

½gð yÞ�1þb
¼ 2u00½gð yÞ�
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so that:

2
u00ðj Þ

u 0½gð yÞ�
# 2

u00½gð yÞ�gð yÞ

u 0½gð yÞ�

� �
1

gð yÞ
¼

b

gð yÞ
: ð35Þ

Since z satisfies z # z 2 gðzÞ; we have:

2h 00ðz Þ ¼
a

z1þa
$

a

½z 2 gðzÞ�1þa
¼ 2h00½z 2 gðzÞ� ¼ 2h00½ y 2 gð yÞ�

y 2 gð yÞ

z 2 gðzÞ

� �1þa

:

Noting that:

y 2 gð yÞ

z 2 gðzÞ

� �1þa

$ 1 2
1

a 2 gðaÞ

� �1þa

¼ l

we obtain:

2
h00ðz Þ

h 0½ y 2 gð yÞ�
$

al

y 2 gð yÞ
: ð36Þ

Using Eqs. (35) and (36) in Eq. (34) and rearranging terms, we get:

gðzÞ2 gð yÞ

z 2 y
$ a

lgð yÞ

y

� �
b 1 2

gð yÞ

y

� �
þ a

lgð yÞ

y

� �21

: ð37Þ

Since ½gð yÞ=yÞ� $ m 0 . m; we have ½lgð yÞ=y� $ lm 0 . m; so Eq. (37) implies:

gðzÞ2 gð yÞ

z 2 y
.

am

bð1 2 mÞ þ am
: ð38Þ

By definition of G, we have:

GðzÞ2 Gð yÞ

ðz 2 yÞ
¼

½z 2 gðzÞ�12a 2 ½ y 2 gð yÞ�12a

ð1 2 aÞðz 2 yÞ

,
½z 2 gðzÞ�2 ½ y 2 gð yÞ�

½ y 2 gð yÞ�aðz 2 yÞ

,
bð1 2 mÞ

½ y 2 gð yÞ�a½bð1 2 mÞ þ am�

ð39Þ

where in the first inequality we used the superdifferentiability property of the

concave function f : Rþþ ! Rþþ; defined by f ðxÞ ¼ x12a; and the last inequality

follows from Eq. (38). Since, by Proposition 1 (iii), ½x 2 gðxÞ� is non-decreasing in x,

Eqs. (10) and (12) imply:

½ y 2 gð yÞ�a $ ½a 2 gðaÞ�a $ dqp

and using this information in Eq. (39) yields:

GðzÞ2 Gð yÞ

ðz 2 yÞ
,

bð1 2 mÞ

dqp½bð1 2 mÞ þ am�
¼ L:

This establishes that G is locally Lipschitz on X, with Lipschitz constant L.

It follows from the above result that G is Lipschitz continuous on X with Lipschitz constant

L. To see this, pick any y 0; z 0 [ X; with 0 , z 0 2 y 0: We can find a positive integer N, such

that N1 $ ðz 0 2 y 0Þ; where 1 was used in the definition of Eq. (26). Define h ¼ ðz 0 2 y 0Þ=N;
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then 0 , h # 1: We use h to define:

ð y0; y1; . . .; yNÞ ¼ ð y 0; y 0 þ h; . . .; y 0 þ ðN 2 1Þh; z 0Þ:

Then, we have, using the fact that G is locally Lipschitz [with the choice of 1 used in the

definition of Eq. (26)] with Lipschitz constant L, and 0 , ð ynþ1 2 ynÞ ¼ h # 1 for n ¼

0; 1; . . . N 2 1;

Gðz 0Þ2 Gð y 0Þ ¼
XN21

n¼ 0

½Gð ynþ1Þ2 Gð ynÞ� # L
XN21

n¼ 0

ð ynþ1 2 ynÞ ¼ Lðz 0 2 y 0Þ:

This establishes that G is Lipschitz continuous on X, with Lipschitz constant L. A

Remark 3 Note that the Lipschitz constant L satisfies:

L #
1 2 m

dqpð1 2 m þ amÞ
; L 0

and this gives us a Lipschitz constant L 0 for G that is independent of the parameter b of the

utility function.

CANTOR TYPE INVARIANT DISTRIBUTIONS

Given the results of the previous section, we can apply the standard theory of IFSs to observe

that:

(i) there is a unique compact set A , ½a; b�; such that GðAÞ< HðAÞ ¼ A; thus, A is a

self-similar set;

(ii) A is the support of the unique invariant distribution, m, of the Markov process, given by

Eq. (3).

Clearly, the set A is of the Cantor type, and the question arises as to whether this Cantor-

type set has zero Lebesgue measure. In the following result, we provide a sufficient condition

on the parameters of the model under which the set A has zero Lebesgue measure. The

sufficient condition used implies in particular that both functions H and G are contractions,

but is stronger than this requirement. It seems plausible that the result might be obtained

under the weaker sufficient condition that H and G are contractions.

Proposition 5 Suppose the IFS {H;G; p; 1 2 p} satisfies the no-overlap property

and the sufficient condition (15). Denoting {q2 2 d½ qp þ ð1 2 pÞ�ð1 2 aÞ} by m, and

bð1 2 mÞ=dqp½am þ bð1 2 mÞ� by L, assume that in addition the following inequality holds:

ð1 þ qÞL , 1: ð40Þ

Then the support A of the unique invariant distribution m of Eq. (3) is of Lebesgue measure

zero, and m is singular with respect to Lebesgue measure.

Proof Define, for the IFS {H;G; p; 1 2 p};

KðHÞ ¼ min {K : K is a Lipschitz constant of H};

KðGÞ ¼ min {K : K is a Lipschitz constant of G}:
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The similarity dimension of A is defined to be the (unique) positive root of the equation:

½KðHÞ�d þ ½KðGÞ�d ¼ 1: ð41Þ

Clearly, KðGÞ # L; and KðHÞ # qL: Given Eq. (40), we have:

KðHÞ þ KðGÞ , 1:

Thus, the unique positive root, d̂; of Eq. (41) must satisfy d̂ , 1: Thus, the similarity

dimension of A is less than 1. For a self-similar set, the Hausdorff dimension of the set cannot

exceed its similarity dimension (see Ref. [15], Theorem 2.3, p. 20). Thus, the Hausdorff

dimension of A is less than 1.

By definition of Hausdorff dimension, the Hausdorff outer measure of A is zero. Since

Lebesgue outer measure coincides with Hausdorff outer measure on R, the Lebesgue outer

measure of A is zero. Since A is closed, it is measurable, and hence the Lebesgue measure of

A is zero.

Since A is the support of m, we must have mðX 2 AÞ ¼ 0; by definition of support

(see, for example, Ref. [6], p. 31). And we have just seen that nðAÞ ¼ 0; where n is Lebesgue

measure. Thus, m is singular with respect to Lebesgue measure (see Ref. [3], p. 374). A

Remark 4

(i) The conditions of the Proposition are non-vacuous. If we continue with the numerical

example discussed in Remarks 1 and 2, we can check that L 0 ¼ 0:5369037 (where L 0

is defined in Remark 3), and ð1 þ qÞL 0 ¼ 0:9825338 , 1; so that ð1 þ qÞL , 1:

This holds independent of the value of the parameter b of the utility function.

(ii) The formula for L indicates a role of the parameter b of the utility function in

generating Cantor type invariant distributions with supports of Lebesgue measure zero.

Lower values of b [that is, utility functions with lower elasticity of marginal utility,

{½2u00ðcÞ�c=u 0ðcÞ}� would make the Lipschitz constants of the maps H and G lower,

leading more readily to singular invariant distributions being generated. This is a new

feature that was not possible to ascertain by studying the example with the logarithmic

utility function.

CONCLUDING REMARKS

This paper further develops the work started in Ref. [12], and subsequently investigated more

thoroughly in Ref. [10] on the nature of the invariant distribution in the standard one-sector

optimal growth model under uncertainty.

In the present work, unlike in the previous studies, the optimal policy function cannot be

explicitly calculated. So, we develop a more general approach to obtain sufficient conditions

on the parameters of the model for the invariant distribution to be a Cantor function.

To obtain such sufficient conditions we rely on the properties of the optimal policy and

value functions (Proposition 1). Specifically, a sufficient condition for the no-overlap

property of the two maps constituting the IFS (associated with the optimal policy) is given in

Proposition 2; this condition is independent of the parameter of the utility function and agrees

with the analogous condition, discussed in Ref. [10], to get a Cantor attractor. Moreover,
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under some additional conditions on the parameters, we are able to establish a lower bound

on the optimal propensity to consume (Proposition 3), the Lipschitz property of the IFS

(Proposition 4) and the singularity of the invariant distribution with respect to Lebesgue

measure (Proposition 5).

The approach used in this paper is potentially applicable to the more general setting of

Ref. [5], where (unlike in the present study) the utility and production functions are not

necessarily iso-elastic. By improving the estimate of the largest fixed point of the lower map

and the smallest fixed point of the upper map of the IFS, and by establishing a Lipschitz

property for the IFS, some general conditions could be obtained under which the invariant

distribution of the model is singular. We hope to report on this line of research in the future.
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